Mortality Model for Multi-Populations: A Semiparametric Comparison Approach

Lei Fang Wolfgang Karl Härdle Juhyun Park

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin

http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Demographic Risk

- □ Low mortality, low fertility, global aging trend
- ⊡ Mortality rate is the key to insurance and pension industry

Mortality Model for Multi-Populations

Demographic key element: mortality

- Mortality rate: number of death/number of exposure, taken as the log transformation
- □ Mortality rate: age-specific, male and female, (region-specific)
- □ Mortality change is more "stable" compared to fertility

Note: In following graphs, rates in different years are plotted in rainbow palette so that the earliest years are red and so on.

Demographic Risk in Japan

Figure 1: Japan female mortality trend: 1947-2012

Mortality Model for Multi-Populations ------

Demographic Risk in Japan

Figure 2: Japan fertility trend: 1947-2012

Mortality Model for Multi-Populations ------

Demographic risk in China

- ☑ Small sample size: 17 years
- Aging trend is inevitable
- Regional similarities between Japan and China

Mortality Model for Multi-Populations

Demographic Risk in China

Figure 3: China female mortality trend: 1994-2010, Japan's historical female mortality is displayed as grey zone.

Mortality Model for Multi-Populations ------

Demographic Risk in China

Figure 4: China male mortality trend: 1994-2010, Japan's historical male mortality is displayed as grey zone.

Literature

Mortality Similarity

• Hanewald (2011): The Lee-Carter mortality index k_t correlates significantly with macroeconomic fluctuations in some periods

Semiparametric Comparison Model

- Härdle and Marron (1990): Semiparametric comparison of regression curves
- Grith et al. (2013): Shape invariant model

Multi-Population Mortality Modeling

China

- □ Is there mortality similarity between China and Japan?
- How can the mortality modeling and forecasting be improved via Japan?

Multi-Countries

• How do we generate a multi-population mortality model based on the common shape?

Outline

- 1. Motivation \checkmark
- 2. Classic mortality models
- 3. Semiparametric comparison model
- 4. Empirical analysis
- 5. Reference

Lee-Carter (LC) Method

- □ A benchmark in demographics: Lee and Carter (1992)
- Idea: use SVD to extract a single time-varying index of mortality/fertility rate level
- Take mortality for analysis:

 $\log\{y_t(x)\} = a_x + b_x k_t + \varepsilon_{x,t}$

- $y_t(x)$ observed mortality rate at age x in year t
- ► *a_x* age pattern averaged across years
- b_x first PC reflecting how fast the mortality changes at each age
- k_t time-varying index of mortality level

Hyndman-Ullah (HU) Method

- ⊡ Variant of LC method: presmooth, orthogonalize, forecast
- Estimate the smooth functions $s_t(x)$ through the data sets $\{x, y_t(x)\}$ for each t:

$$y_t(x) = s_t(x) + \sigma_t(x)\varepsilon_t$$

Mortality Model for Multi-Populations -

Hyndman-Ullah (HU) Method

Use functional principal component analysis (FPCA)

$$s_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- \square $\mu(x)$ mean of $s_t(x)$ across years
- $\bigcirc \phi_k(x)$ orthogonal basis functional PCs
- $\bigcirc \beta_{t,k}$ uncorrelated PC scores
- \Box $e_t(x)$ is residual function with mean zero

Mortality Model for Multi-Populations -

Mortality Analysis

Figure 5: China's female mortality decomposition by HU Method: yellow areas represent the 95% confidence intervals for the coefficients forecast.

Mortality Model for Multi-Populations

Mortality trends comparison

 \odot Time-varying indicator k_t derived from Lee-Carter model presents similar pattern.

Figure 6: China mortality trend (short curves) vs. Japan mortality trend (long curves): female, male.

Mortality Model for Multi-Populations

Semiparametric comparison model two-country case

Take China and Japan for example \Box Use k_t derived from LC model

$$\log\{y_t(x)\} = a_x + b_x k_t + \varepsilon_{x,t}, \qquad (1)$$

⊡ Infer China's mortality trend via Japan's trend

$$k_{c}(t) = \theta_{1}k_{j}\left(\frac{t-\theta_{2}}{\theta_{3}}\right) + \theta_{4}, \qquad (2)$$

Mortality Model for Multi-Populations -

Model estimation

Estimation procedure

$$\min_{\theta} \int_{t_c} \left\{ \hat{k}_c(u) - \theta_1 \hat{k}_j \left(\frac{u - \theta_2}{\theta_3} \right) - \theta_4 \right\}^2 w(u) du, \qquad (3)$$

- $\hat{k}_c(t)$ and $\hat{k}_j(t)$ are the nonparametric estimates of the original time-varying indicators, t_c is the China data's time interval
- the comparison region satisfies the condition

$$w(u) = \prod_{tj} \mathbb{1}_{[a,b]}\{(u-\theta_2)/\theta_3\},\$$

where tj is the time interval of Japan's mortality data, $a \ge inf(tj)$ and $b \le sup(tj)$.

Algorithm

- ☑ Iterate based on the scheme (3)
- □ Set up the prior estimates $\theta^0 = (\theta_1^0, \theta_2^0, \theta_3^0, \theta_4^0)^\top$ and the nonparametric estimates of $\hat{k}_c(t)$ and $\hat{k}_j(t)$
- \Box Update $(\theta_1, \theta_2, \theta_3, \theta_4)^{\top}$
- Reach convergence

Semiparametric comparison model multi-country case

- □ $k_i(t)$ is a derived time-varying mortality indicator for country *i*, with $i \in \{1, ..., n\}$, n = 36 stands for 36 countries.
- ⊡ The curves can be represented in the form

$$k_i(t) = \theta_{i1}k_0\left(\frac{t-\theta_{i2}}{\theta_{i3}}\right) + \theta_{i4}, \qquad (4)$$

Mortality Model for Multi-Populations -

Estimation of Common Trend

Synchronization

$$k_i(\theta_{i3}t + \theta_{i2}) = \theta_{i1}k_0(t) + \theta_{i4}, \qquad (5)$$

□ Identification conditions (normalize)

$$T^{-1} \sum_{i=1}^{N} \theta_{i1} = T^{-1} \sum_{i=1}^{N} \theta_{i3} = 1,$$

$$T^{-1} \sum_{i=1}^{N} \theta_{i2} = T^{-1} \sum_{i=1}^{N} \theta_{i4} = 0$$
(7)

• Common trend curve

$$k_0(t) = T^{-1} \sum_{i=1}^{N} k_t(\theta_{i3}t + \theta_{i2})$$
(8)
$$1 \text{ulti-Populations}$$

Mortality Model for Multi-Populations -

3-6

Initial Value and Algorithm

- Choose a group of countries with bigger sample size and set their average curve $k_0(t)$ as initial reference curve
- \boxdot Repeat the iteration of two-country case and generate initial θ^0 for the other countries
- \odot Get the common trend based on formula (8)
- ☑ Iterate based on the above procedures
- \Box Update $(\theta_1, \theta_2, \theta_3, \theta_4)^{\top}$
- ⊡ Reach convergence

Demographic Data

🖸 China

Mortality: age-specific (0,90+), male and female Years: 1994-2010

Data Source: China Statistical Year Book

 The other 35 countries Mortality: age-specific (0,110+), male and female Extracted ages: (0,90) Years: it differs from 14 years (Chile) to 261 years (Sweden) Data Source: Human Mortality Database

Mortality trends comparison

☑ Intuitive comparison: time delay between China and Japan female mortality trend.

smoothed trends of no-delay, 20-, 23- and 25- year delay respect. Mortality Model for Multi-Populations

Understanding θ

$$heta = (heta_1, heta_2, heta_3, heta_4)^ op = (1, heta_2,1, heta_4)^ op$$

- \boxdot θ_1 is the general trend adjustment, possibly selected as 1.
- \boxdot θ_2 is the time-delay parameter
- \boxdot θ_3 is the time acceleration parameter, possibly selected as 1.
- $\exists \theta_4$ is the vertical shift parameter

Initial choice of θ_2 and θ_4

 \odot Potential linear relation between θ_2 and θ_4 .

Figure 10: Loss surface of θ_2 and θ_4 . Mortality Model for Multi-Populations Figure 11: Contour of θ_2 and θ_4 .

_

4-4

Time delay or vertical shift

 \boxdot Stick with time delay influence θ_2 , and the optimal value is obtained around 23.

Goodness of Fit

 \bigcirc Optimal θ = (1.160, 23.032, 1.000, −0.057)^T

Figure 13: Goodness of Fit: Japan trend, Japan smoothed trend, China trend, China smoothed trend and fitted trend (black dots).

Forecast

 \odot Forecasting k_t for China

$$k_c(t+i) = \theta_1 k_j \left\{ \frac{(t+i) - \theta_2}{\theta_3} \right\} + \theta_4,$$
(9)

Figure 14: Forecast of China's mortality trend from 2011 to 2030.

Mortality Model for Multi-Populations -

4-7

Multi-Populations Case

Figure 15: Original mortality trend among 36 countries

Figure 16: Original mortality trend among 36 countries

Mortality Model for Multi-Populations

4-8

Multi-Populations Case

Figure 17: Reference curve vs. original smoothed $k_i(t)$

Figure 18: Reference curve vs. shifted $k_i(t)$

Multi-Populations Case

Italy 1872 -- 2009

Norway 1846 -- 2014

Mortality Model for Multi-Populations

Figure 20: Norway shifted \hat{k}_t according to reference curve k_0 .

Outlook

- ☑ Global common mortality trend
- Confidence interval for forecast with multi-populations mortality model
- ⊡ Comparison with classical mortality methods

Mortality Model for Multi-Populations: A Semiparametric Comparison Approach

Lei Fang Wolfgang Karl Härdle Juhyun Park

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin

http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

References

- M. Grith, W. Härdle and J.Park Shape Invariant Modeling of Pricing Kernels and Risk Aversion

Journal of Financial Econometrics, 2013

K. Hanewald

Explaining mortality dynamics: the role of macroeconomic fluctuations and cause of death trends North American Actuarial Journal,2011

 W. Härdle and J.S. Marron Semiparametric comparison of regression curves Annals of Statistics, 1990

Mortality Model for Multi-Populations -

References

R. J. Hyndman and H. Booth Stochastic Population Forecasts using Functional Data Models for Mortality, Fertility and Migration International Journal of Forecasting, 2008 R. J. Hyndman and Md. S. Ullah

Robust Forecasting of Mortality and Fertility Rates: A Functional Data Approach

Computational Statistics and Data Analysis, 2007

R. D. Lee and L. R. Carter Modeling and Forecasting U.S. Mortality Journal of the American Statistical Association, 1992

Mortality Model for Multi-Populations

